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Abstract

Hilbert Transform is generalized based on the assumption of the complex analytic functions
only in the strict upper-half plane /mz >0, insted of the usual assumption in /mz=0. Our
method gives the mathematical basis of the regularization of some singular integrals and also
gives a new viewpoint of distribution theory and hyperfunction theory. Our viewpoint is
excelent because it is easy to understand and is explicit in presentation: we do not use the

» o«

concept of “the test function”, “the inductive limit” and “the defining function”. The mathemat-
ical connection with two dimensional potential-theory is also given. It is interesting to apply
our result to the global theory of the electric heart pulse of biologycal systems.

1. INTRODUCTION

Hibert Transform (to be called simply HT hereafter) [1] is one of integral transforms. It
is used in Kramers-Kronig relations in solid state optics and in dispersion relations in high
energy physics. Its derivation is based on the complex analytic functions in upper half plane
(Imz=0) and on Cauchy’s Integral formula. Our present theory uses the complex analytic
function f(z) in the strict upper half plane (/mz >0) and the complex analytic function g(z) in
the strict lower half plane (/mz <0). Considering both f(z) and g(z), we obtain a regulariza-
tion of singular integrals and the connection with generalized functions [2](and hyperfunctions
[3]). We can obtain explicit presentations and a new standpoint.

2. THE BOUNDEDNESS CONDITION IN THE STRICT UPPER HALF PLANE

Let f(z) be analytic in the strict upper half plane (Imz >0). For ¢ inside the region of the
closed integral-path C., we have the equation

F(&)=gir f 1| 225 Jee

Next we use the boundedness condition : For any 6>0, there exists a constant M >0, such that
[F(z)<M in Imz>¢6. We devide the integral and take the limit R—oo to give

A= [T e -2 e

27t z—¢

Thus we have

TS5 12815 AZE
Hachinohe Institute of Technology

— 37 —



NFIERFERY A7 2 THEHEFRE £65

A Tnz fetin) =L (" —LELID e, (0<e<n)
R Here the right hand side does not depend on e.
C E Let g(z) be analytic in the strict lower half plane
(Imz <0). For any d, let there exist a connstant
& Rez M’ such that lg(z)|[<M’ in Imz<d8. Then we
S have
R 0 R (E—in)= ”f T_Ex—%lf?dx (0<e<n)

Here again the right hand side does not depend on e. For f(z) and g(z) above, we have the
equation

: N fx+ie) glx—ie) .
f(!f-*-m)—g(f—Z77)—?[co dx[u_”’_w)g_’_’} {x—f—z’e)2+r)2] (e-indep., 0<e<7)

Specially, if f(z) is bounded in both Imz > ¢ and Imz <&, then we have the equation

fe+in)—fe—in)=L[[” %"x

Lot [ ) i,

(e-indep., 0< e < 7%)

In the usual HT we know the equation,

Herin=2[ L8

If we achieve the formal replacement,

[ote = [[va

then the above usual equation in HT simply gives us our new equation for f(z). Our new
integral is to be called “the double trip integral” or simply DTI hereafter. Thus we have a
generalization (to be called simply GHT hereafter) of the equation in the usual HT. The above
replacement is important for the reguralization of singular real integrals in our theory. On the

other hand we have the definition of “the vertical differentiation VD” or “the imaginary

differentiation ID” of the real-variable function f(&).

vdff(f)— lim 30 {f(5+z77) f(é—iﬂ)}

27zz 7= +o[fm (x J{ET)—F zdx

Here it is to be noted that we do not assume both
1) the standpoint of hyperfunction,
and
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2) Lippmann-Schwinger formula [4], ie.,

1
x+z0

=P%$ ind (x)

3. THE BOUNDEDNESS CONDITION OF zf(z) IN Imz>0

Let f(z) be analytic in Imz>0. And let | zf(z)|<K in Imz>¢ for any constant & >0.
Similarly as in the section 2, we have the equation,

&) =g §. )| S+ o7 e
Our boundedness condition enables us to obtain the integral representation of F(&+in),
. x—&ETie
f(5+l77) (x E+ZE)2+772f(X+ZE)d

(e-indep., 0<e<7)
We devide the complex valued function f(x+ ig) into the real part «(x, ) and the imaginary
part v(x, e). We have the representation for #,
_1 x—E&+ie ; ]
u(é,”)—H[ [(x E+ZE)2+772f(x+le) dax
(e—indep., 0<e<7)

If we take the limit & —+0 in the integrand, then we have the relation between u(£, 7) and v(x,
0),

u(&. 7) f dx (x—&)elx, [J)’ (e= +0)

(x—&)+y

Taking the limit » —+0 in the integrand, we have the relation between %(£,0) and v(x, 0),
which is usually interpreted as Cauchy’s principal value integral in HT :

ue, 0~L ["ar 250, (7—-+0)
~Lp [ 2iY (HT)

For Imaginary part v we have the representation,

—_ 1 (p | x—&tie .
v(E, 7])_ ”IwRe[(x_$+l€)2+772f(x+le):|dx
(e-indep., 0<e<7%)

Taking the limit ¢ —-+0 in the integrand, we have the relation between v(&, 7) and u(x, 0),

we, 1)~ —L [T ) (e =+0)

Taking the limit » —+0 in the integrand, we have the relation between «(&,0) and »(x, 0),
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which is usually interpreted as Cauchy’s principal value integral in HT :

o(8,0)~—= [ ax xx g) (7 —>+0)
~—Lp o 2D, L

From our standpoint the usual HT gives the relations between the real part «(x, 0) and the
imaginary part v(x, 0) of the analytic function f(z) in Imz=0. If f(z) is a real function, we
have the identity

v(x,0)=0, (HT, the real function)

Let g(z) be analytic in Imz<0. And let | zg(z)|< K’ in Imz< —§ for any constant & >
0. Then we have the equation,

g(é—m)=—% - "('JCTIE:":;;;EEJFqgg(x ie)dx

(e-indep., 0<e<7)
Therefore we have
f(&E+in)+g(E—in)

=L "ax [ (x—é+ie)flxtie) (x—E—is'Jg(x*:'e)]
i J- (x—&+ie)+7n* (x—E—ieF+2?

(e-indep., 0< e <7)

Specially if f(z) satisfies the same conditions in both Imz>4 and Imz< — ¢, we have

e+ iny+fe—in=—= [ et raax

or
f(E+in)+f(E—in) _
7 =omi [ 52+7;2f('”
In HT this eq. corresponds to
1 (r—c)f(t}
ferim=—r "o i, (HT)

Here the integral is the usual one on the real axis.
For example we consider

A==

We have

fE+in)— f(E—m)—Ezzmz_nf[ _ﬁ)a+7]
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__—2ine 1 .
. f x+€zg(x,é,n,e)dx

where
(x—E)Bx—E&)+p*—¢°
(x—EP+p2—e?P+dei(x— &)

L ) o (x—=8)Bx—&)+p* 1
l)gzrglelzl;}g(x, & n, 5)—1)}113 {(x_$)2+772}2 —Ez+”2

g(x,&; n,e)= {

Therefore we have the relation

o 1 ) )
%[mmg(x, &5, e)dx=limlime(y, &; 7,6)

1

T (e-indep., 0< e <7)

It is interesting to compare this results with the property of &-function,

[C8(nx)dx=h(0), —E—~5(x)

—en T X+
Coulomb potential 1/x and its Fourier transform, 1/(£%+75?), of the screened Coulomb
(Yukawa) potential are related as follows :

fx)=+ - F(&D=(S/NE 1)

_ 1 . S 1
=g, Vet —fE—ml=—gi

Here the “screening operation” or “Yukawa operation” S is related to VD as follows:

241(&)=lim[ (572, 7))

for general functions f(x) beyond the function 1/x. In other words, S is the complex
difference-scheme for VD, similar to the difference-scheme for the real differentiation.
For f(z)=1/z we have the relation,

fle+in+f (6= in)=gher=nr [ e )
:%Imde}l(x,f; ?7,6)

where

) __ (=2x){(x—&)+ )+ 87"
h(x, &; 7, €)= {(I_S)2+?}2_£z}2+4£2(X*f)2

(E—2x)x—&P+&p* _ £
lanlslm hix, &; 7, e)—hm (x=EF+ 72— &4

Therefore we have the relation
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%Zmﬁh(x, &7, e)dx
=lim lim h(y, §; 7/,8>=ng:7

(e-indep., 0<e<7)
Following examples shows the regularization of singular integrals by our approach

1 1 1+ie 0—ie 1
£, 7dx‘73¥110<f NS >de
1 .. x2—e?+2¢ex ¥
5 lim|log ———>%—
e—+0

PR :_é'{log 1—log(—1)}

{2n7rz (2n+l)7ri}=—%
1 1 :i 1+7e 1—ig
fil —x_ - 2 <v[l+1s -[ >

1. x*—¢ +2z5x]"‘1__ _
5 l}m[log———x2+eg LT log1=0

N'»—*

(taking the principal value of log function)
Here it is to be noted that the integrals concerning §-function

[otar, [“sG—aax

are undefined in the distribution theory and in the hyperfunction theory, as is well known

4. GENERALIZED HILBERT TRANSFORM AND TWO DIMENSIONAL POTENTIAL

From our integral representation we have the imaginary part and the real part of /(£+i7)
N flx)
Im f(&+in)= 27rzf./ (x—e;}z—kzz’dx
Re f(é+in)= s ]f = 5)2+772f(x)

Here our assumptions are:

1) f(z) is analytic in Imz+0
2) | f(2)|I<M in Imz>¢& for any 6>0
3)

| F(z)|< M’ in Imz<—§ for any 6" >0

4) f(é+in)=f(é—1ip), “ 7 means the complex conjugation
For the imaginary part of /(&4 i) we can rewrite as

Imf(é+z77)——ff{ log[(x— E)2+77]}f(x)dx
732 aﬂff Flx)log [(x— &)+ n*ldx

Here in the last equation we assumed the order of »-differentiation and DTT with respect to x
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where the similarity between our result and the logarithmic potential in the well known two
dimentional potential-theory [5] is obvious. For the real part of F(£+i7) we can rewrite as

Re f(&+in) —ff{ log [(x— E)2+7721}f(x)dx

Here the partial derivative with x in the integrand has the same form as the well known
double-layer potential in two dimension [5]. For the analytic function f(z) in the strict upper
half plane with bounded condition for zf(z) for the upper part of z-plane we have the
expression

b x—E&+ie .
F(&+in)= mf(x+ze)dx

. z x—é+ie )
o glrﬂu[m (x—E+ie)i+p 5f(x+ie)dx
~ 1 _x—& .
) sllr{lo.[m (x—E)Z_l_”zf(x“‘ZE)dx

Here in the last step a suitable assumption for e-dependence in the integrand was made. From
this we have the representation for the real part «#(&, ) and the imaginary part v(&, 7):

u(é&, 77)&i lim mﬁ)fﬁ?z v(x, €)dx=(Tv)&, 7)

e-+0

1 f (x— 5 T zﬂv(X)dx

#v(x)=£4_1§3 v(x, €)
and

(&, 7) hmf GoEr i 5 77 ulx, e)dx=—(Tu)(&, 7)

7T e~+0

—_ul ;5
B Jrf—m (x—&r+ ﬁzyu(x)dx’
#u(x)=Lim u(x, )
e~+0
Here the symbol Lim in the definition of x#, and x. means the generalized limit in the similar
sense of generalized functions. We have the equations for the operator T,
(T?0)x, e)=[T(Tv)x, e)=—0v(x, e)
(T?uXx, )=[T(Tu)l(x, e)=—ulx, €)
for the imaginary and real parts of any analytic-type function. Thus we have the operator
equation for T :
T?=—-1 or T?*+1=0
These equations have the same form as in the usual HT, though our present result is a wide

generalization of the usual HT. We call T as “the imaginary-unit type operator” or simply
IUTO.
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5. CONCLUSION AND OBSERVATION

We genaralized HT based on the complex function analytic only in /mz >0 different from
HT which is founded on the complex function analytic in /mz=0. Our GHT can be expressed
in the analogous form as HT using DTI, with which the reguralization of singular real integrals
can be achieved. We naturaly introduced VD(ID), which is related with the screening opera-
tion S, which is the complex finite difference-scheme for VD. The logarithmic and the double-
layer potentals in two dimension are connected with our GHT. The generalized limit Lim was
introduced in the similar sense of generalized functions. The [UTO, the Imaginary-Unit Type
Operators, was introduced, which will have important role in our succeeding work. The
application of GHT to the electric heart pulse in biological systems [6] is the interesting
problem.
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